lunes, 16 de noviembre de 2009

Potencial quimico

Potencial químico

El potencial químico de un sistema termodinámico es el cambio de energía que experimentaría el sistema si fuera introducida en éste una partícula adicional, con la entropía y el volumen mantenidos constantes. Si un sistema contiene más de una especie de partículas, hay un potencial químico diferente asociado a cada especie, definido como el cambio en energía cuando el número de partículas de esa especie se incrementa en una unidad. El potencial químico es un parametro fundamental en termodinámica y se asocia a la cantidad de materia.

El potencial químico es particularmente importante cuando se estudian sistemas de partículas que reaccionan. Consideremos el caso más simple de dos especies, donde una partícula de la especie 1 puede transformarse en una partícula de la especie 2 y viceversa. Un ejemplo de un sistema de esta clase sería una mezcla supersaturada de agua líquida (especie 1) y vapor de agua (especie 2). Si el sistema está en equilibrio, los potenciales químicos de las dos especies deben ser iguales. De lo contrario, cualquier incremento en un potencial químico produciría emisión neta e irreversible de energía del sistema en forma de calor[1] cuando esa especie con el potencial incrementado se transformara en la otra especie, o una ganancia neta de energía (de nuevo en forma de calor) si tuviera lugar la transformación reversible. En las reacciones químicas, las condiciones de equilibrio son generalmente más complicadas ya que intervienen más de dos especies. En este caso, la relación entre los potenciales químicos en el equilibrio viene dada por la ley de acción de las masas.

Puesto que el potencial químico es una cantidad termodinámica, es definido independientemente del comportamiento micróscopico del sistema, es decir, de las propiedades de las partículas que lo constituyen. Sin embargo, algunos sistemas contienen importantes variables que son equivalentes al potencial químico. En los gases y líquidos de Fermi, el potencial químico en el cero absoluto de temperatura es equivalente a la energía de Fermi. En los sistemas electrónicos, el potencial químico está relacionado con el potencial eléctrico eficaz.

Potencial de difusión y Donnan



En el recipiente de la Fig. 2.33 hay una membrana que separa dos soluciones de KCl. En 1 la concentración de KCl es de 100 mmol/L y en 2, la concentración de KCl es de 50 mmol/L. Habrá un gradiente de concentración de K+ y de Cl- de 1 hacia 2 y de agua de 2 hacia 1. Para evitarnos tener que estudiar dos fenómenos (difusión y ósmosis) al mismo tiempo, agregamos en el lado 2 una sustancia, como el manitol
o la sacarosa, que NO sea permeable en la membrana, hasta que la osmolaridad a ambos lados sea la misma. En esas condiciones, sólo hay gradiente para el K+ y el Cl-




Si la membrana que hemos colocado tiene características similares las del glóbulo rojo, de acuerdo a la Tabla 2.ll la permeabilidad al K+ es del orden de 10-9 cm.s- 1 y la del Cl- está en el orden de los 10-4 cm.s-1, por lo que la velocidad con que el Cl- atraviesa la nembrana es mayor que la velocidad con que pasa el K+.
En esas condiciones, no podemos decir que el KCl atraviesa la membrana exactamente igual a como lo haría una molécula neutra. El Cl-, al atravesar la membrana, le ha ganado la delantera, aunque sea mínimamente, al K+ . Esa mínima ventaja es suficiente para que entre el lado 1 y el lado 2 aparezca una DIFERENCIA DE POTENCIAL ELECTRICO, con el signo negativo en 2 y el positivo en 1. Este potencial eléctrico tiene, a su vez, un efecto inmediato sobre los flujos difusionales de Cl- y de K+. Como el lado 2 se ha hecho negativo, el movimiento de K+ de 1 hacia 2 tiende a acelerarse, mientras que el movimiento de Cl- de 1 hacia 2 tiende a frenarse. Así, si por la diferencia en los coeficientes de permeabilidad difusional, los iones K+ y Cl- pasaban la membrana a distintas velocidades, ahora, por la aparición de una nueva fuerza impulsora, la DV, estos tiende a pasar con velocidades similares.
Este es el origen del POTENCIAL DE DIFUSION: un potencial eléctrico vinculado a la difusión de iones que tienen distinta permeabilidad, a favor de un gradiente de concentración.
- Formas en que un potencial de difusión puede mantenerse. Los potenciales de difusión duran el mismo tiempo que las diferencias de concentración y desaparecen cuando ellas se disipan. Si, en un sistema, encontramos un potencial que suponemos es de difusión y éste se mantiene constante, sin decaer o desaparecer con el tiempo, debemos buscar cuál es el mecanismo que está manteniendo las CONCENTRACIONES CONSTANTES.
Analizaremos varias posibilidades:
a) Uno de los compartimientos tiene un ion no difusible.
b) A uno de los compartimientos le llega un flujo constante de iones.
c) Hay un mecanismo de transporte activo que "bombea" los iones que se pierden del compartimiento.

a ) Uno de los compartlmlentos tiene un ion no difusible: En el modelo de la Fig. 2.33 se colocaron 2 soluciones de KCl y se dijo que la permeabilidad del Cl- era mayor que la permeabilidad del K+.
Hagamos, ahora, otro modelo (Fig. 2.34), en el que la permeabilidad del anión sea CERO, que no pase la membrana en absoluto. Un caso posible sería el de las proteínas contenidas en el interior celular y que, por el pH a que se encuentran, se comportan como aniones (Pr-).
Como la solución que las contiene es eléctricamente neutra habrá un número igual de cationes que los acompañan y que, por comodidad, diremos que es K+. Del otro lado no hay Pr-, pero hay aniones DIFUSIBLES, que pueden atravesar la membrana. A estos aniones, también por comodidad, los representaremos como Cl- y estarán acompañados por un número igual de cationes, que llamaremos K+.
Hagamos que las concentraciones, a ambos lados, sean:
Lado 1: 150 mmol/L de KCl, disociados en 150 mEq/L de K+ y 150 mEq/L de Cl-. Volumen: 1 litro.
Lado 2: 150 mmol/L de proteinato de potasio, disociado en 150 mEq/L de Pr- y 150 mEq/L de K+. Volumen: 1 litro
Se puede ver que hay una diferencia, un gradiente de concentración para el Cl- de 1 hacia 2, que hay un gradiente de Pr- de 2 hacia 1 y que no hay gradiente para el K+. Como la proteína no puede difundir a través de la membrana, el flujo de Cl- determinará la aparición de una diferencia de potencial eléctrico, con signo (-) en 2 y (+) en 1. La diferencia de potencial se convierte en una fuerza impulsora para el K+, que ahora tendrá un flujo neto de 1 hacia 2. La diferencia de potencial también será una fuerza que se opone al movimiento del ion Cl-.
En la Fig. 2.34 se han representado, con líneas llenas, las FUERZAS QUIMICAS, las vinculadas a los gradientes de concentración. Se ha representado, con líneas punteadas, las FUERZAS ELECTRICAS, las vinculadas a la diferencia de potencial eléctrico. Se puedo ver que el Cl- TIENDE a moverse, de 1 hacia 2, por gradiente químico y que también TIENDE a moverse de 2 hacia 1 por gradiente eléctrico. El K+, por su parte, tiende a moverse, como se dijo, de 1 hacia 2 por "electrico", lo que determinará que su concentración en 2 aumente. Este aumento en la concentración de K+ determinará la aparición de un gradiente de concentración, por lo que el K+ tenderá, también, a moverse, de 2 hacia 1, por "químico".



Potencial de membrana

Hay potenciales eléctricos en todas las membranas de todas las células del cuerpo; algunas células como las nerviosas y las musculares, son excitables, es decir capaces de auto generar impulsos electroquímicos en sus membranas. En mayor parte de los casos estos impulsos sirven para transmitir señales a lo largo de la membrana. En otros tipos de células, como las glandulares, macrófagos y células ciliadas, es probable que ocurran alteraciones de otro tipo en el potencial de la membrana y esos cambios desempeñan una función significativa en el control de muchas funciones celulares.

Cuando la concentración de potasio es muy alta dentro de la célula y muy baja fuera de ella a esto se le llama permeabilidad selectiva los iones de potasio pero a ningunos más. A causa del enorme gradiente de concentración entre el potasio interior y el exterior, los iones de potasio muestran fuerte tendencia a difundirse hacia fuera. Al difundirse se llevan consigo cargas positivas hacia el exterior generando un estado de electropositividad fuera de la membrana y de electronegatividad en el interior debido a los aniones negativos que no se difunden al exterior junto con el potasio. Esta nueva diferencia de potencial rechaza los iones positivos de potasio en dirección retrograda desde el exterior hacia el interior.

En 1 mseg poco más o menos, el cambio de potencial alcanza la suficiente intensidad para bloquear además la difusión neta de iones de potasio al exterior a pesar de elevado gradiente de concentración. En los troncos nerviosos del mamífero normal la diferencia de potencial que se requiere se aproxima a 94 milivoltios (mV) y en el interior de la membrana es negativo.

Cuando hay una concentración muy baja de iones de sodio fuera de la membrana y una concertación muy baja de sodio en el interior. Estos iones también tienen carga positiva y la membrana es muy permeable al sodio e impermeable a otros iones. La difusión de los iones de sodio hacia el interior genera un potencial de membrana ahora de polaridad opuesta; el lado externo es negativo y el lado interno es positivo. Una ves mas los milisegundos el potencial de membrana se eleva lo suficiente para bloquear la difusión neta de iones de sodio hacia el interior; sin embargo, en esta ocasión el potencial delos troncos nerviosos de mamíferos se aproxima a 61mV y el interior de la fibra es positivo.

Esta es la diferencia de concentración de iones a través de una membrana con permeabilidad selectiva puede generar un potencial de membrana en condiciones apropiadas.





Bibliografía
http://es.wikipedia.org/wiki/Potencial_qu%C3%ADmico
http://www.elergonomista.com/biologia/biofisica64.html
http://html.rincondelvago.com/potencial-de-membrana.html

No hay comentarios:

Publicar un comentario